Wednesday, July 3, 2013

Organic Farming Could Release Us From the Curse of Fertilizer

Agriculture (Photo credit: thegreenpages)
By Dr. Mercola
Environmental pollution is a significant problem. But while most of the focus is placed on polluting industries, toxins like mercury and small particle traffic pollution, a major source of environmental devastation is caused by modern food production. Far from being life sustaining, our modern chemical-dependent farming methods:
  • Strip soil of nutrients
  • Destroy critical soil microbes
  • Contribute to desertification and global climate change, and
  • Saturate farmlands with toxic pesticides, herbicides and fertilizers that then migrate into ground water, rivers, lakes and oceans.
For example, many areas of Minnesota, which is prime farmland, now face the problem of having dangerously elevated levels of nitrogen in their drinking water.
The conversion of grasslands and pastures into chemical-driven, industrial crop land has eliminated much of the natural filtering of ground water that such native landscapes typically provide. Health risks of nitrogen include a potential connection to cancer, as well as thyroid and reproductive problems in both humans and livestock.

Looming Fertilizer Shortage Could Spell the End of Modern Agriculture

Modern fertilizer consists of varying amounts of nitrogen (N), phosphorus (P) and potassium (K). These three are believed to be essential for plants to grow, (below, I’ll discuss why NPK may not be as necessary as we think.), and are extracted from the soil with each harvest.
This is why farmers spread fertilizer on their fields, to replace the nutrients lost. It’s certainly not the ideal and sustainable way to farm, but it’s thought to be the most efficient for large-scale farms. Strategies like crop rotation and allowing large fields to rest would cut too deep into profits that are based on quantity, opposed to quality.
Unfortunately, the Earth's soil is now being depleted of nutrients at more than 13 percent the rate it can be replaced. Not only that, but according to some, we may also be facing looming shortages of two critical fertilizer ingredients: phosphorus and potassium.
A 2012 article in Mother Jones1 discussed “peak phosphorus and potassium,” drawing lines of similarity between the diminishing reserves of these natural elements and “peak oil.”
Unlike nitrogen, phosphorus and potassium cannot be synthesized, and our aggressive large-scale farming methods, which deplete soils of nutrients that then must be replaced, are quickly burning through available phosphorus and potassium stores.
According to well-known investor Jeremy Grantham, writing for Nature:
“These two elements cannot be made, cannot be substituted, are necessary to grow all life forms, and are mined and depleted. It’s a scary set of statements. Former Soviet states and Canada have more than 70 percent of the potash. Morocco has 85 percent of all high-grade phosphates. It is the most important quasi-monopoly in economic history.
What happens when these fertilizers run out is a question I can’t get satisfactorily answered and, believe me, I have tried. There seems to be only one conclusion: their use must be drastically reduced in the next 20-40 years or we will begin to starve.”
This largely unknown issue may end up playing a more significant role than you can currently imagine, because it cuts to the heart of the sustainability of modern agricultural practices, or rather the lack thereof.
“[T]he next time someone facilely insists that the 'industrial farms are the future,' ask what the plan is regarding phosphorus,” Mother Jones writes. “Developing an agriculture that's ready for a phosphorus shortage means a massive focus on recycling the nutrients we take from the soil back into the soil—in other words, composting, not on a backyard level but rather on a society-wide scale.
It also requires policies that give farmers incentives to build up organic matter in soil, so it holds in nutrients instead of letting them leach away... Both of these solutions, of course, are specialties of organic agriculture.”

Monoculture vs. Polyculture

Monoculture (or monocropping) is defined as the high-yield agricultural practice of growing a single crop year after year on the same land, in the absence of rotation through other crops. Corn, soybeans, wheat, and to some degree rice, are the most common crops grown with monocropping techniques. In fact, corn, wheat and rice now account for 60 percent of human caloric intake, according to the UN Food and Agriculture Organization.2
By contrast, polyculture (the traditional rotation of crops and livestock) better serves both land and people. Polyculture evolved to meet the complete nutritional needs of a local community. Polyculture, when done mindfully, automatically replenishes what is taken out, which makes it sustainable with minimal effort.
If it’s true that we may at some point face a shortage of phosphorus and potassium, large-scale farming facilities would be hard-pressed to produce much of anything after a short while. Such shortages might even lead to geopolitical strife, as phosphate rock is primarily concentrated in the occupied territory of the Western Sahara region of Morocco. It may sound farfetched to some, but how far would a nation go to secure access to such a location if the future of the entire agricultural industry and food supply depended on it?

Monocropping Is NOT the Way to Feed a Growing Population

The evidence tells us that forging more sustainable alternatives is imperative if we hope to survive. Yet proponents of factory farms and genetically engineered crops argue that monocropping, or crop specialization, is the only way to feed the masses and that it's far more profitable than having small independent farms in every township.
But is this really true? A number of studies show just the opposite! In fact, studies are showing that medium-sized organic farmsare far more profitable than ANY sized industrial agricultural operation.
For example, researchers at the University of Wisconsin's College of Agriculture and Life Sciences and Michael Fields Agricultural Institute3 (results published in 2008 in the Agronomy Journal)4 found that traditional organic farming techniques of planting a variety of plants to ward off pests is more profitable than monocropping. The organic systems resulted in higher profits than "continuous corn, no-till corn and soybeans, and intensively managed alfalfa."
Not only that, but organic farming practices use natural, time-tested techniques that naturally prevents soil depletion and destruction, and doesn’t use chemical fertilizers and other agricultural chemicals that pollute our soil, air, and waterways.
In the study just mentioned, the researchers concluded that government policies supporting monoculture are "outdated," and that it's time for support to be shifted toward programs that promote crop rotation and organic farming. As it turns out, when you eliminate the agricultural chemicals, specialized machinery and multi-million dollar buildings, fuel costs, insurance costs, and the rest of the steep financial requirements of a big industrial operation, your cost of producing food takes a serious dive into the doable. And did I mention… the food from organic farms tend to be far more nutritious, besides being free of toxic contaminants?
Even the US Department of Agriculture (USDA) is starting to question our current path of monoculture. It recently released a report titled: "Climate Change and Agriculture in the United States."5 According to the report, our current agricultural system, which is dominated by corn and soy, is unsustainable in the long term. Should temperatures rise as predicted, the US could expect to see significant declines in yields by the middle of this century. Food shortages would be inevitable, since little besides these crops are grown. (Keep in mind the primary crops grown in the US are used in processed food production, so countless numbers of food products would be affected by massive crop loss.)

Nitrogen Overuse Threatens the Environment

Going back to where we started, the overuse of nitrogen in farming is causing far more environmental devastation than many currently comprehend. A recent National Geographic article6 addresses this issue:
“'Runaway nitrogen is suffocating wildlife in lakes and estuaries, contaminating groundwater, and even warming the globe’s climate. As a hungry world looks ahead to billions more mouths needing nitrogen-rich protein, how much clean water and air will survive our demand for fertile fields?'
China, the world’s largest producer of synthetic nitrogen, has hundreds of nitrogen factories, and the country’s farmers apply vast amounts of nitrogen to their fields. One rice farmer reports spreading no less than 530 pounds of urea, a dry form of nitrogen, on each acre. Vegetable farmers use even more than that. According to the featured article,7 some use upwards of two tons of nitrogen each hectare (2.47 acres).
'Few of them think they’re doing anything harmful. No, no pollution,' says Song, when asked about the environmental effects of fertilizer,' the article states. "Scientists tell a different story. 'Nitrogen fertilizer is overused by 30 to 60 percent' in intensively managed fields, says Xiaotang Ju, of the China Agricultural University in Beijing. 'It’s misuse!' Once spread on fields, nitrogen compounds cascade through the environment, altering our world, often in unwelcome ways. Some of the nitrogen washes directly from fields into streams or escapes into the air. Some is eaten, in the form of grain, by either humans or farm animals, but is then released back into the environment as sewage or manure from the world’s growing number of pig and chicken farms.”
Water pollution, as mentioned earlier, is one of the side effects of such overuse. In a matter of decades, rivers that used to run crystal clear though Chinese provinces are now cloudy from overgrowth of phytoplankton, fed by fertilizer runoff from the fields. According to National Geographic:
“A recent national survey of 40 lakes in China found that more than half of them suffered from too much nitrogen or phosphorus. (Fertilizer containing phosphorus is often to blame for algal growth in lakes.)
The best known case is Lake Tai, China’s third largest freshwater lake, which regularly experiences huge blooms of toxic cyanobacteria. A spreading bloom in 2007 contaminated water supplies for two million people in the nearby city of Wuxi. Excess nutrients are damaging fisheries in China’s coastal areas in the same way that fertilizer runoff flowing down the Mississippi has destroyed fisheries in the Gulf of Mexico: by creating dead zones in which algae and phytoplankton bloom, die, and decompose, using up oxygen and suffocating fish.”  Link back to the rest of the story and to Mercola website.
Enhanced by Zemanta

No comments:

Post a Comment

Thank You for taking the time to comment on this article. Please note, we moderate every comment before we allow it to post. Comments do not show up right away because of this.